Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage
نویسندگان
چکیده
Aqueous electrochemical energy storage devices using potassium-ions as charge carriers are attractive due to their superior safety, lower cost and excellent transport properties compared to other alkali ions. However, the accommodation of potassium-ions with satisfactory capacity and cyclability is difficult because the large ionic radius of potassium-ions causes structural distortion and instabilities even in layered electrodes. Here we report that water induces structural rearrangements of the vanadium-oxygen octahedra and enhances stability of the highly disordered potassium-intercalated vanadium oxide nanosheets. The vanadium oxide nanosheets engaged by structural water achieves high capacity (183 mAh g-1 in half-cells at a scan rate of 5 mV s-1, corresponding to 0.89 charge per vanadium) and excellent cyclability (62.5 mAh g-1 in full cells after 5,000 cycles at 10 C). The promotional effects of structural water on the disordered vanadium oxide nanosheets will contribute to the exploration of disordered structures from earth-abundant elements for electrochemical energy storage.
منابع مشابه
Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for High‐Rate and Long‐Life Lithium‐Ion Battery Anodes
Graphene oxide-wrapped amorphous copper vanadium oxide is fabricated through a template-engaged redox reaction followed by vacuum dehydration. This material exhibits high reversible capacity, excellent rate capability, and out standing high-rate cyclability. The outstanding performance is attributed to the fast capacitive charge storage and the in situ formed copper with enhanced electrical con...
متن کاملAlkaline Benzoquinone Aqueous Flow Battery for LargeScale Storage of Electrical Energy
The replacement of fossil fuel energy with renewable sources has been increasing as the cost of solar and wind energy falls rapidly. Recent reports show that from 2008 to 2015, the cost of wind generation fell by 41%, rooftop solar photovoltaic installations by 54%, and utility-scale photovoltaic installations by 64%. The cost of solar panels now takes up less than 30% of a fully installed sola...
متن کاملNanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective
Sodium-ion batteries (SIBs) have received intensive attentions owing to the abundant and inexpensive sodium (Na) resource. Layered vanadium oxides are featured with various valence states and corresponding compounds, and through multi-electron reaction they are capable to deliver high Na storage capacity. The rational construction of unique structures is verified to improve their Na storage pro...
متن کامل3D Interconnected V6O13 Nanosheets Grown on Carbonized Textile via a Seed-Assisted Hydrothermal Process as High-Performance Flexible Cathodes for Lithium-Ion Batteries
Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydroth...
متن کاملStrategies for improving the lithium-storage performance of 2D nanomaterials
2D nanomaterials, including graphene, transition metal oxide (TMO) nanosheets, transition metal dichalcogenide (TMD) nanosheets, etc., have offered an appealing and unprecedented opportunity for the development of high-performance electrode materials for lithium-ion batteries (LIBs). Although significant progress has been made on 2D nanomaterials for LIB applications in the recent years, some m...
متن کامل